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Abstract. A new kind of random walk named bounded LCvy fights (BLFS), where 
the step length is a bounded random variable, is proposed and their properties are 
studied with the aid of mean field and Monte Carlo techniques. BLFS are charactelized 
by the LCvy exponent (m) and the leneh  of the longest possible flight (RM). It 
is found that in one dimension ( I D ) ,  the mean number of distinct sites visited by 
the walker ( S N )  and the average square displacement ( ( R ; ) )  behave like SN a 
Rd*'("'Nd*(d, M = 1) and (A%) o( R$'"N"(v = 1).  where f(u) is a continuously 
tunable function of D with f(u) e 0.9(u < 0.1) and f(o) rr O(o > 2). In addition, the 
long-time behaviour of annihilation reactions between BLFB, which react viaenchange 
in ID is found to he anomalous because the density of walkers ( P A )  behaves Like 
dp*/dt .̂ -R$)pZ with X = 1 + (l/&) = 3(t -+ m) while, shortly after the 
beginning oi the reaction, the ciarsicai behaviour X = i j i  - 0 )  hoids. 

1. Introduction 

LBvy flights (LFS) are random walks where the steps are not necessarily performed to 

displacement [I]. After this early work of LBvy, subsequent studies due to  Mandelbrot 
[2], Montroll and West [3] and Shlesinger [4] have contributed to  our understanding 
of the effects of arbitrarily long-range hoppings on diffusion. Recently, there has been 
considerable interest in the LF process including the study of the critical behaviour 
of self-avoiding LFs [5, 61, diffusion of LFs on fractals [7], the universality of node- 
avoiding and path-avoiding LFs [SI, the LF approach to  diffusion on a self-avoiding 
walk cross-links [ 9 ] ,  etc. Very recently, Ott  et 01 [lo] have reported a very interesting 
experimental realization of the LBvy flight. 

LFS are characterized by the Ldvy exponent 0 < U < 2, that  is the probability for 
a step to have a length greater than r (PLF(r ) )  is assumed to  behave like 

navt nn;nhhnssm hrlt thn aton Ionnth i= 2 rsnrlnm viri ihle  with ~n infinite mein <nii>~c) 
. l ~ * y  L.~.6'."YY'" ."..~".. .I I .I.." -... .-..- l." ... ".. ........ "_ ... l_l"-._ 

It is interesting to note that 0 < U < 2, leads t o  superdiffusive behaviour while the 
case U = 2 corresponds to  ordinary diffusion [6]. The distribution (1) has also been 
used t o  study the growth kinetic of a percolation cluster by the 'butterfly mechanism' 
[ l l ,  121, where r is now the distance from the most recently added sick particle [ l l ] .  
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Nevertheless, the butterfly flight is not an LF because the former moves on a fractal 
while the latter is a random walk on a Euclidean lattice. 

The purpose of this work is to study the diffusion of LFs with bounded hoppings 
(BLFS), that is 

where R, is the longest possible flight. Note that LFS are recovered in the limit 
R, 3 co,u < 2. while (1) is useful for the evaluation of the asymptotic (T  -t m) 
properties of LFs [3, 61, in nature actual random walks necessarily perform bounded 
hoppings. Let us consider, for example, a molecule or an atom adsorbed on a surface 
site at temperature T .  Such a particle can overcome the activation barrier for diffusion 
with probability P a ( E  is the diffusion energy and k Boltzmann constant) 
and then travel over the surface a certain distance before becoming adsorbed again 
in another site. The travelled distance may depend on T ,  the details of the particle- 
surface interaction energy, the surface roughness, etc, but i t  is bounded to a certain 
maximum value R,. Specifically, the dependence on both R, and U of the average 
number of distinct sites visited (S,) and the average square displacement (R;) of the 
BLF after N steps (flights) are studied by means of Monte Carlo simulations in one 
dimension (ID). 

Furthermore, there is a growing interest in the study of diffusion-limited recom- 
bination reactions, of the type A + A - inert, between ordinary A-random walks. 
This kind of process is relevant in many areas of physics, chemistry and biology such 
as heterogeneous catalysis reaction kinetics, exciton annihilation in molecular crys- 
tals, particleantiparticle annihilation in cosmology, etc [13-201. It is found that the 
long-time behaviour of such reactions is anomalous because it is dominated by the 
spectral dimension of the substrata [13-181. By contrast, little attention has been 
devoted to annihilation reactions via long-range interactions, such as exchange, in 
spite of their relevancy in solid state physics (211. So, the present work also reports 
a combined mean-field and Monte-Carlo study of exchange mediated recombination 
reactions between BLFs in ID. 

2. Brief  details on the simulation method 

In order to perform the Monte Carlo simulations it is assumed that the probability of 
makingaflightfromz t o z f r ( 1  5 r <  RM)isgiven hy{C(RM,u)(r-"-(r+1)-u)}/2, 
where C(RMU1'u) is a normalization constant [5] (see also (2)). Both S, and (RL) are 
evaluated up to lo6 flights irrespective of the lattice size in order to avoid finite-size 
effects. Results are averaged over 5 x 10' samples for each pair of values (RM,u).  

Annihilation reactions between BLFs have been carried out using ID rings (periodic 
boundary conditions) of size L = lo4. Simulations always start with fully filled sam- 
ples, i.e. pOA = 1, where pOA is the initial concentration of A-particles (BLFS) on the 
sample. Double occupancy of lattice sites is forbidden. The Monte Carlo time unit ( t )  
is defined so that each BLF may be visited once, on average. Reactions are followed up 
to concentrations of about pA 2 5 x that is t E lo3. During the process one has 
to select a t  random a ELF, the jumping direction and the jump length R(R 5 RM).  111 

order to simulate the exchange reaction, the selected BLF moves sequentially in single 
steps and, if another BLF (the nearest) is found during such displacement, the reaction 
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takes place. So, both BLFs are removed from the sample and the process continues. 
Otherwise, t h e  selected ELF is placed a t  a distance R form the starting position, i.e. 
one has a diffusion event without reaction. Results are typically averaged over 102-103 
simulations. 

I I IO I 
Id Id 

N 

Figure 1. (a )  and ( 6 )  lop-log plotsol SN and ( R S )  against N,  respectively. Dala 
obtained using different valuer of both RY and 0 ,  as indicated in each figure. The 
straight lines have slope d .  = $ ( a )  and Y = 1 ( b ) ,  respectively. 

3. Results and discussion 

9.1. Diflusion of  isolated BLFs 

Figure l (a )  shows log-log plots of S, agains N for different values of R, and U .  

These plots clearly suggest that  S, behaves like 

S, D: F(R,, u)Nd.  (3) 

where d, = f is the random walk exponent of ordinary walkers in one dimension and 
F(R,, U )  is constant for fixed values of R, and U. On the other hand, log-log plots 
of (E&)  agzizs? .N (figme ! ( b ) )  suggest the behaviour 

(R;) m F(RM,u)NY (4) 

where v z 1 is the exponent obtained for ordinary walkers in one dimension and 
P(R,, U )  is constant for fixed values of R ,  and U .  From figure 1 it follows that both 



3354 E V Albano 

.-*U- .--. 10.0 

100 
10' 102 Id 

RM 
lo' lo2 lo3 

RW 

Figcre (c)  *.!A ( b )  !.g-!ag P!Q!S nf F!Rh:l.) rnd E(.R:.:,o) ag4illst R, for 
different values of 0 ,  respectively, More details in the text. 

F and P may change few orders of magnitude within the used range of RM and U 
values. In order to understand the dependence of these functions on the arguments 
it is useful to make log-log plots of F and F against RM (figures 2 ( ~ )  and 2 ( b ) ,  
respectively). The straight lines obtained suggest that the following behaviour should 
hold 

F(RM,  U) 0: R$) (Sa) 

and 

where the exponents f(u) and f(u) are a-dependent functions which have been evalu- 
ated by least-squares linear regression of the data points in figures Z ( Q )  and 2 ( b ) ,  
respectively. The error in the determination of both f(u) and f(u) is about 5% or 
less, as estimated from the observed fluctuations of the fitted values of the slopes using 
different number of data  points. The dependence of f(u) on U is shown in figure 3, 
and it follows that 

( a )  0.9 U < 0.1 

from ( Q )  to ( e )  0.1 < U < 2 (6a)  
U > 2. 
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The results obtained are also consistent with 

f(U) (ti)f(.) 
within an error of 10% in the worst case (U  < 1).  Nevertheless, as will be discussed 
after (Sb) ,  i t  is expected that (66)  should hold exactly. 

i 

Figure 3. Semi-logarithmic plot of f(m) against 0.  The estimated error in f(o) is 
less than 5%. More details in t,he text. 

10‘ L I I 

lo3 lo4 lo5 lo6 

Figure 4. Log-log plot of S,vRL’(O) against N ,  using 2 x 10’ 5 RM 5 2 x lo3 and 
5 o 5 10’. More details in the text. 

Therefore, using (sa) and (3) one expects that for BLFs the following behaviour 
should hold 

S, a R’,”’JN~*. ( 7 )  

So, a log-log plot of S,RG’,/‘“’ against N should give a single straight line with slope 
d ,  = 1 2 for all values of R, and U .  This plot is shown in figure 4 where the excellent 
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collapse of the data suggests the validity of (7) .  A similar argument also holds for 
(R$)  inserting (56) in (4). So, defining N' = R,$")N one has that (3) and (4) for 
BLFs can be rewritten as 

,s", C( NId* 

and 

( R i , )  M N'" (86) 

respectively. That is, the behaviour of both SN and (R$)  is the same for both BLFS and 
ordinary walkers but using R3") as a scaling factor for the number of steps performed 
by BLFs. Note that replacing N' in (Ea) one gets SN M R$")Nd*,  and comparing 
with (7) it follows that f(u) = j (u)d, (d,  = i). So, one expects that ( 6 b )  should hold 
exactly in order to be consistent with the scaling of the number of steps performed 
by the walker. It is also interesting to note that the exponent f(u) of the scaling 
factor can be continuously tuned by a variation of the parameter U. This behaviour is 
analogous to the observed in both the 'butterfly model' [ll, 121 and the Fisher-Ma- 
Nickel model [22], because in both cases critical exponents can be continuously tuned 
by the parameter U of the distribution (1). 

9.2. Annihilalion =actions between BLFs 

Pointing now our attention to annihilation rcactions, of the type A + A i inert, let 
us recall that  for ordinary walkers the rate of reaction behaves like [13-161 

X dp, M -PA dt 

2 t J 0  

= { 1 + l/d, t*oo 

where pA is the concentration of A-walkers and X is the reaction order. 
tion (8) can also be obtained for BLFs. 

If 0: E ,  from (7) it follows 

Equa- 
In fact, defining the visitation efficiency 

E dSN/dt [13], assuming that N M t and that the rate constant (If) behaves like 

and then integrating (10) one has 

- dpA c( x 
M PA' dt 

Therefore, for BLFs one expects that  the same behaviour as that for ordinary walkers 
should hold but scaling the rate constant by a factor R$'), as it follows from the 
definition of E and the assumed proportionality between Ii and E .  In order to test 
the validity of (10) Monte Carlo simulations of recombination reactions between A- 
BLFs in one dimension have been performed using standard techniques [15, 161. For 
this purpose it is convenient to integrate ( l l ) ,  so one gets (pOA - tX- l )  - py)) (x t 
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where pOA is the initial concentration of A-BLFs. Figure 5 shows a plot of ( p i ;  - p i 1 )  
against the Monte Carlo time. Shortly after the beginning of the reaction ( t  < 100) 
the plot exhibits a straight line behaviour with slope X - 1 = 1 in agreement with 
(96). Nevertheless, for t > 100 one observes the crossover from the classical (A' = 
2) to the anomalous behaviour. So, for the latter the straight line obtained has a 
slope X - 1 = l/d,(d, = f) as expected from (9bj. Therefore, for short-time (high 
concentration tegime) the reaction proceeds according to  the classical prediction i.e. 
a iypisai second-order reaciion, whiie for i 3 a, jiow concentration regimej the BLFS 
actually 'feel' the ID nature of the sample and the anomalous behaviour ( X  = 3) 
holds. Annihilation reactions of ordinary walkers in one dimension have already been 
studied in detail [13, 151 and the results are in agreement with the data shown in 
figure 5. 

Figure 5 .  Log-log plot of (p;: - p i ' )  agdmt t for annihilation reaclions between 
BLFS with ~ O A  = I.O(+)o = l O - ' , ? l ~  = 102;(o)o = 1 0 - ' ; R ~  = 10'. The full 
(broken) line with slope X - 1 = 1(X - 1 = 2) has been drawn for compa~ison, 
respectively. More details in l,lie text. 

4. Conciusions and remarks 

In this work, a new kind of random walk, the so-called bounded Levy flights (BLFS), 
where the step length is a bounded random variable, is proposed and studied in one 
dimension. Both the mean number of distinct sites visited by the walker and the 
average square displacement of BLFS behave like ordinary walkers after a suitable 
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scaling of the number of steps performed by the walker. The scaling functions and 
exponents are evaluated. 

Exchange mediated annihilation reactions between BLFS exhibit a crossover from 
the classical (t + 0, concentration - 1, X = 2) to the anomalous (t 3 00, concentra- 
tion -+ 0, X = 3) behaviour, where X is the reaction order given by X = 1 + d, with 
d, = f for the former (d ,  is the random walk exponent of BLFs in one dimension). 

It should be interesting to study whether the behaviour observed in one dimension 
for annihilation reactions between BLFs also holds in higher dimensions and fractal 
media. In fact, recombination reactions between atoms and molecules is a topic of 
major interest in many fields such as biophysics, catalysis, exchangedominated reac- 
tions in solids, etc. More work also has to be done in order to understand the role 
played by long-range interactions in recombination reactions. 
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